A Spreadsheet Program for Use in the Detection of Anomalous Numerical Data of the Type Frequently Encountered in Cell and Radiation Biology Colony Survivals

Helene Z Hill

Rutgers NJ Medical School, Newark, NJ

And

Joel Pitt

Renaissance Associates, Princeton, NJ

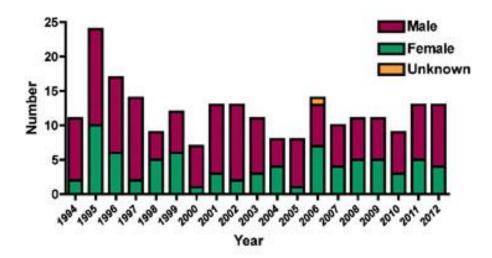
American Society for Photobiology Biennial Meeting, San Diego, CA June 19, 2014

Scientific Misconduct

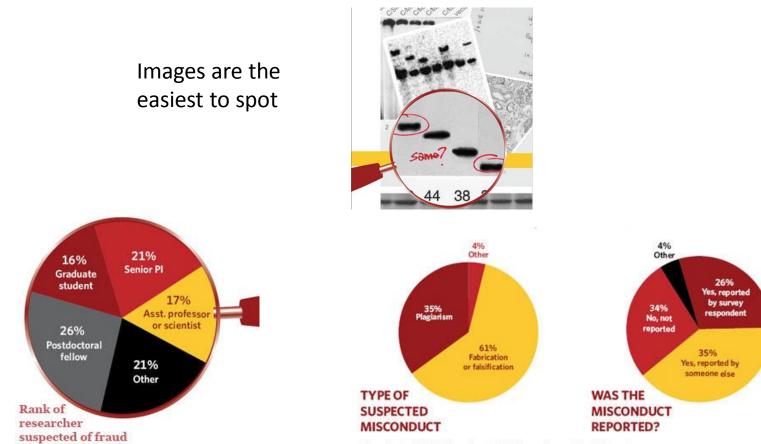
Falsification, Fabrication, Plagiarism

- How much is there?
- Who does it?
- How much does it cost?
- What to do about it?

Misconduct accounts for the majority of retracted scientific publications PNAS 109: 17028 (2012)


1. Ferric C. Fang^a, ^b, ¹,

2.<u>R. Grant Steen^c,¹</u>, and


3.<u>Arturo Casadevall^d, ¹, ²</u>

А 500**-**Fraud/Suspected Fraud Error 400-Plagiarism Duplicate Publication Number 300-200-100n 20022006 1977-1981 1982:1986 2007-2011 1987-1991 1992 1996 1991:2001 Year of Retraction В % of articles retracted for fraud or suspected fraud 0.010-0.005-0.000 2005 1975 1995 2000 1980 1985 1990 Year of Publication

Men commit more misconduct than women Williams, SCP *Biotechniques 1/23/2013*

A Gawrylewski Fixing Fraud *The Scientist* **23:67** (2009)

*According to a 2008 Gallup poll sent to 2,296 researchers receiving NIH grants

Fanelli D (2009) How Many Scientists Fabricate and Falsify Research? A Systematic Review and Meta-Analysis of Survey Data. **PLoS ONE 4(5):** e5738. doi:10.1371/journal.pone.0005738

"A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86–4.45) of scientists admitted to have fabricated, falsified or modified data or results at least once –a serious form of misconduct by any standard– and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91– 19.72) for falsification, and up to 72% for other questionable research practices. "

"...misconduct was reported more frequently by medical/pharmacological researchers than others."

The Costs of Research Misconduct From the Ithenticate^R website

- 2002: 1.09m journal articles published annually 2010: 1.94m journal articles published annually
- 7,000,000 researchers/ca 32,000 scholarly journals
- 23% of submissions to one leading scholarly journal rejected for plagiarism
- Types of damage
 - job losses, revoked PhDs and awards, damaged reputations, retractions
 - Est cost of single investigation in US \$525,000
 - ca 71,000 patients treated in ca 900 retracted studies
 - \$110,000,000 Total cost of investigations into research misconduct in US in 2010

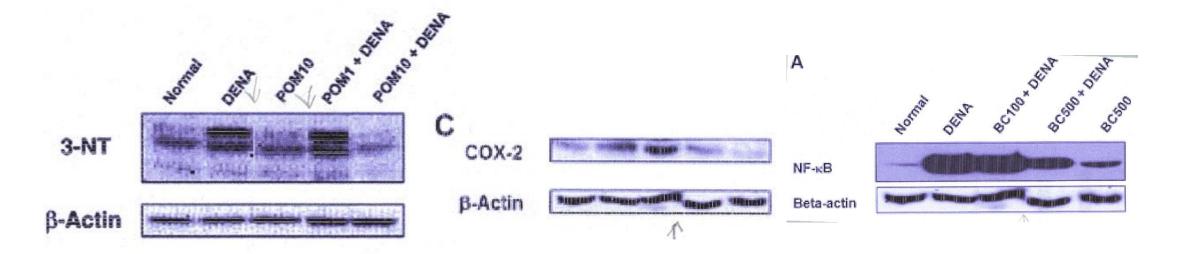
Research ethics: 3 ways to blow the whistle

Reporting suspicions of scientific fraud is rarely easy, but some paths are more effective than others.

- •<u>Ed Yong</u>,
- •Heidi Ledford
- •& <u>Richard Van Noorden</u>
- 27 November 2013

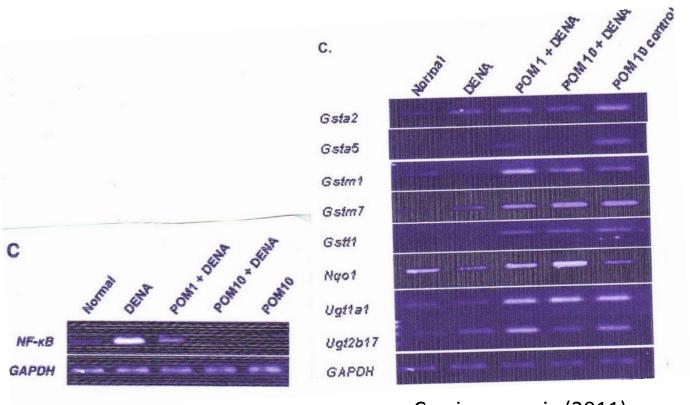
The Analytical

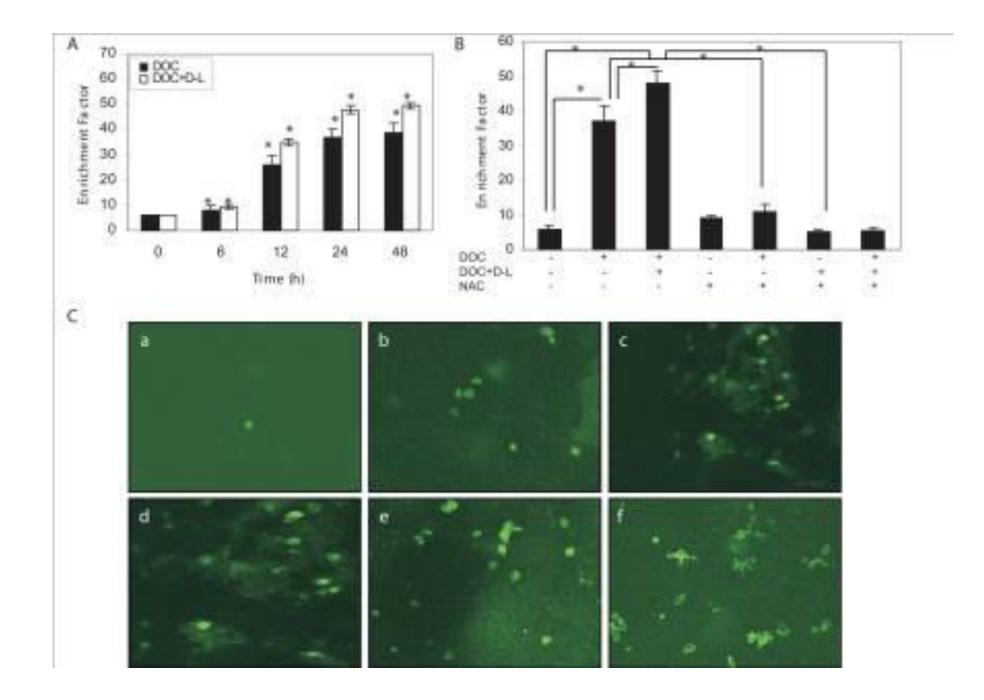
The Quixotic


The Anonymous

What to do about it?

Clare Francis: the mysterious anonymous whistleblower

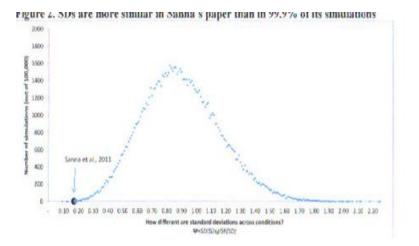

Image Manipulations

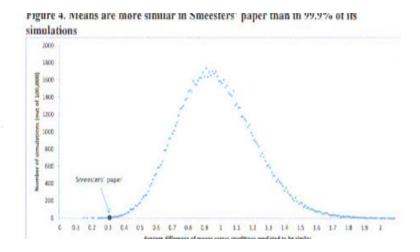

3NT: Sharp vertical lines between lanes 2/3 and 3/4, background change lane 4 versus lanes 3 and 5. Possible figure manipulation

Beta-actin: large vertical steps between bands in lanes 3 and 4 versus cox-2 and NF- κ B: no vertical step between bands 3 and 4: unlikely these are from the same blot

Data Reuse: same GAPDH in 2 different studies

J. Nutr Biochem (2013) **24:** 178-187 Carcinogenesis (2011) **32:** 888-896




Statistical Sleuthing Uri Simonsohn: the analytical whistleblower

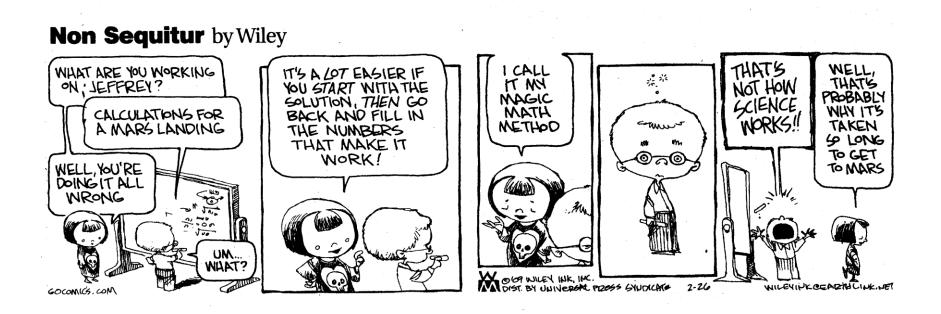
Just post it: The lesson from two cases of fabricated data detected by statistics alone. Uri Simonsohn The Wharton School University of Pennsylvania uws@wharton.upenn.edu

I argue that requiring authors to post the raw data supporting their published results has, among many other benefits, that of making fraud much less likely to go undetected. I illustrate this point by describing two cases of fraud I identified exclusively through statistical analysis of reported means and standard deviations. ... If journals, granting agencies, universities or other entities overseeing research promoted or required data posting, it seems inevitable that fraud would be reduced.

Statistical Sleuthing: Helene Z Hill: the quixotic whistleblower and Joel Pitt = Sancho Panza

Data Sets:

Colony Counts in triplicate

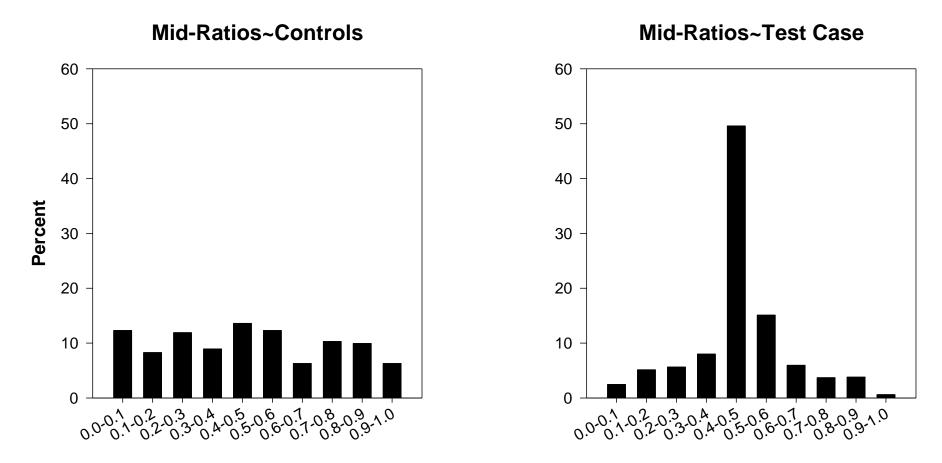

Cell Counts (not necessarily in triplicate)

Coulter ZM

HZ HIII, PhD

The Mid-Ratio

Mid-Ratio: Unusually high frequency of the rounded average as one of the triplicate sample counts

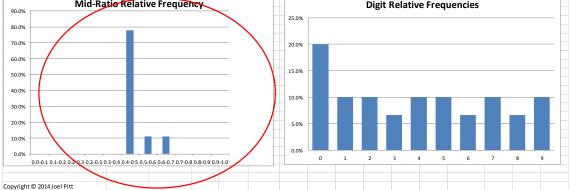

Expt #: 2

Date: 02/22/99

Colony Counts and Survival Fraction

Tube.dilution	Colony 1	Colony 2	Colony 3	Avg Colony	SF	
12	130	149	142	140.33	-	
2.2	131	137	143	137.0	0.9762	-
3.2	123	131	138	130.66	0.9311	
42	128	134	140	134	0.9548	
52	12-5	130	136	· 130·33	0.9287	ин
6.3	115	126	137	12.6	0.089	C
7.2	17	20	29	20.33	0.1484	20
8:2	29	35	41	35	0.2678	460
9.2	62	70	54	62	0.4626	80
10.2	70	79	62	70.33	0.5396	100

Mid-Ratio Distributions


Distribution

Test Case Colony Counts

Mid Ratio: (mid-lo)/(hi-lo)

Sample #	T Tr	iplicate Co	ounts	Average	Mid- ratio (b- a)/(c-a)	C Tr	iplicate Co	ounts	Average	Mid- ratio (b-a)/(c- a)
1	130	149	142	140.3	0.63	92	111	119	107.3	0.7
2	131	137	143	137	0.5	78	85	74	79	0.36
3	123	131	138	130.6	0.53	142	126	120	129.3	0.27
4	128	134	140	134	0.5	120	129	121	123.3	0.11
5	125	130	136	130.3	0.45	64	68	79	70.3	0.27
6	115	126	137	126	0.5	92	101	78	90.3	0.61
7	17	20	24	20.3	0.43	74	62	94	76.7	0.38
8	29	35	41	35	0.5	89	69	67	75	0.091
9	62	70	54	62	0.5	85	87	97	89.7	0.17
10	70	79	62	70.3	0.47	71	58	55	61.3	0.19

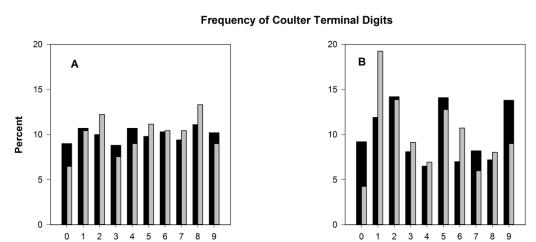
Workbook Name	dataforspreads	heet.xlsm													
Worksheet Name	sheet1														
Start Column	m														
Start Row	6														
End Row	15														
SetLambda=Mean (Otherwise Low)	TRUE														
Minimum Value of Gap for Mean	2														
Minimum Value of Gap for Mid-Ratio	10														
Description of Data Set															
Number of Data Values	30													_	
Number of Complete Triples	10												-	-	-
								-							
	Qualifying	Meet Criterion	Expected	Std Dev	z-value	(normal) p	-value								
Triples that Include Mean	10			1.12	6.29	4.23E-09									
Triples with Mid-Ratio in [.40,.60]	9	8	2.38	1.35		2.91E-04									
Mid-Ratio Distribution															
Range	0.0-0.1	0.1-0.2	0.2-0.3	0.2-0.3	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.7	0.7-0.8	0.8-0.9	0.9-1.0				
Percentage	0.0%	0.0%	0.0%	0.0%	0.0%	77.8%	11.1%	11.1%	0.0%	0.0%	0.0%				
Total Number of Data Values	30											_			
Terminal Digit	0	1	2	3	4	5	6	7	8	9					
Terminal Digit Expected Frequency	3	3		3				3		3					
Terminal Digit Actual Frequency	6			2				3	2	3					
Terminal Digit Relative Frequency	20.0%	10.0%	10.0%	6.7%	10.0%	10.0%	6.7%	10.0%	6.7%	10.0%					
Chi-Square Goodness of Fit Test															
Chi-Square value	4.0														
p-Value	0.91														
Values w. Equal Terminal Digits														_	
Number of Data Values	0														
Percentage of Values	0.0%														
p-Value assuming prob = 0.1	1.00														
					Scroll Dowr	to See Gr	aphs								
Mid_Ra	tio Relativ	ve Frequer	TOV.							olativ	Eroa	uencies			

Coulter Counts: Terminal Digits and Doubles

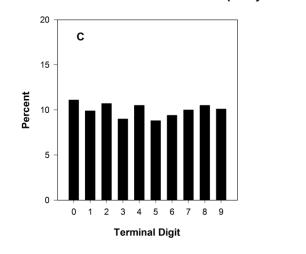
Sample #	т	Triplicate Count	ts	C	Triplicate Coun	ts
1	57 7	59 2	56 3	8 9	9 7	8 6
2	61 <mark>1</mark>	60 7	65 3	33 1	31 6	32 9
3	58 1	59 3	61 7	37 8	33 0	37 5
4	63 3	64 5	61 9	33 3	40 4	36 7
5	51 <mark>1</mark>	53 7	54 9	39 6	38 2	40 8
6	54 4	56 2	57 3	34 2	33 1	34 4
7	66 <mark>6</mark>	67 2	69 3	34 0	34 9	34 4
8	60 1	57 2	63 3	32 5	34 7	30 4
9	5 <mark>11</mark>	52 9	54 1	31 5	29 1	28 3
10	53 2	55 5	56 2	30 7	33 9	32 3
11	51 3	54 9	56 2	28 5	31 4	32 3
12	56 2	53 9	54 7	26 0	26 2	28 4
13	56 0	54 2	52 <mark>2</mark>	36 1	31 5	29 8
14	68 0	66 9	67 1	35 5	32 4	35 6

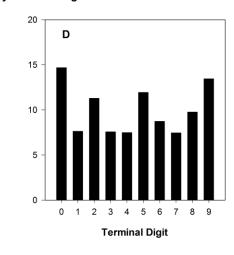
10 doubles p = 7.31 x 10⁻³

4 doubles p= 0.616


Term Digit	0	1	2	3	4	5	6	7	8	9	Total	Chi Sq	Chi sq p for uniform
T Freq	2	7	10	8	1	2	1	5	0	6	42	21.8	2.4 x 10 ⁻³
C Freq	3	4	3	4	7	6	4	4	3	4	42	3.7	0.93
Uniform	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	42		
Freq													

Test Case Coulter Counts


577	592	563	89	97	86
611	607	653	331	316	329
581	593	617	378	330	375
633	645	619	333	404	367
511	537	549	396	382	408
544	562	573	342	331	344
666	672	693	340	349	344
601	572	633	325	347	304
511	529	541	315	291	283
532	555	562	307	339	323
513	549	562	285	314	323
562	539	547	260	262	284
560	542	522	361	315	298
680	669	671	355	324	356


	datafaran 1	hard a land								1				
Workbook Name	dataforspreads	neet.xlsm												
Worksheet Name	sheet1													
Start Column	d													
Start Row	4													
ind Row	17													
SetLambda=Mean (Otherwise Low)	TRUE													
Minimum Value of Gap for Mean	2													
Minimum Value of Gap for Mid-Ratio	10													
Winimum value of Gap for Mid-Ratio	10													
Description of Data Set														
Number of Data Values	42													
Number of Complete Triples	14													
Number of Complete Imples	14													
				0.10		,								
		Meet Criterion				(normal) p	-value							
Triples that Include Mean	14			0.88										
Triples with Mid-Ratio in [.40,.60]	14		3.18	1.57	0.84	0.19738								
Mid-Ratio Distribution	1													
Range	0.0-0.1	0.1-0.2	0.2-0.3	0.2-0.3	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.7	0.7-0.8	0.8-0.9	0.9-1.0			
Percentage	7.1%			7.1%		14.3%	21.4%	14.3%	14.3%	0.8-0.9	0.0%			
encentage	7.1%	7.19	/.1%	7.1%	14.5%	14.3%	21.4%	14.5%	14.3%	0.0%	0.0%			
			-											
Total Number of Data Values	42													
Terminal Digit	0					5	6			9				
Terminal Digit Expected Frequency	4		4 4			4	4	4	4	4				
Terminal Digit Actual Frequency	2		7 10	8	1	2	1	5	0	6				
Terminal Digit Relative Frequency	4.8%			19.0%		4.8%	2.4%	11.9%	0.0%	14.3%				
				20.070			,0			2				
Chi-Square Goodness of Fit Test			-											
	25.6													
Chi-Square value														
	2.36E-03	critical	-											
p-Value														
Values w. Equal Terminal Digits														
Values w. Equal Terminal Digits Number of Data Values	10													
Values w. Equal Terminal Digits	10 23.8%													
Values w. Equal Terminal Digits Number of Data Values Percentage of Values	23.8%													
Values w. Equal Terminal Digits Number of Data Values					Scroll Dowr	to See Gr	anhs							
Values w. Equal Terminal Digits Number of Data Values Percentage of Values	23.8%				Scroll Dowr	to See Gr	aphs							
Values w. Equal Terminal Digits Number of Data Values Percentage of Values	23.8%				Scroll Dowr	to See Gr	aphs							
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical			Scroll Dowr	to See Gr	aphs		Di-:4 1					
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 Mid-Ra	23.8%	critical	ncy		Scroll Dowr	to See Gr	aphs		Digit f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr		aphs		Digit f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 Mid-Ra	23.8% 7.31E-03	critical	ncy		Scroll Dowr	to See Gr	aphs		Digit f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 Mid-Ra	23.8% 7.31E-03	critical	ncy		Scroll Dowr		aphs		Digi t f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 Mid-Ra	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0%	aphs		Digit f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 Mid-Ra	23.8% 7.31E-03	critical	ncy		Scroll Dowr		aphs		Digit f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 Mid-Ra	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0%	aphs		Digit f	Relative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 25.0% 20.0%	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0%	aphs		Digit	Relative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 Mid-Ra	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0%	aphs		Digitf	Relative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 25.0% 20.0%	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0%	aphs		Digitf	Relative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 25.0% 20.0%	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0%	aphs		Digit f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0% 20.0% 15.9%	aphs		Digitf	Relative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1 25.0% 20.0%	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0%	aphs		Digit f	telative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0% 20.0% 15.9%	aphs		Digit f	celative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0% 20.0% 15.0% 10.0%	aphs		Digit f	Relative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0% 20.0% 15.9%	aphs		Digit f	celative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0% 20.0% 15.0% 10.0%	aphs		Digit f	Celative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0% 20.0% 15.0% 10.0%	aphs		Digit f	celative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	critical	ncy		Scroll Dowr	25.0% 20.0% 15.0%	aphs		Digit f	Relative	e Freque	ncies		
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	ritical			Scroll Dowr	25.0% 20.0% 15.0% 10.0%	aphs							
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	ritical			Scroll Dowr	25.0% 20.0% 15.0%	aphs	1		Celative			7	8 9
Values w. Equal Terminal Digits Number of Data Values Percentage of Values p-Value assuming prob = 0.1	23.8% 7.31E-03	ritical			Scroll Dowr	25.0% 20.0% 15.0%	aphs	1					7	8 9
/alues w. Equal Terminal Digits Number of Data Values Percentage of Values Value assuming prob = 0.1	23.8% 7.31E-03	ritical			Scroll Dowr	25.0% 20.0% 15.0%	aphs	1					7	8 9

Terminal Digits and Doubles

Frequency of Colony Terminal Digits

Others

Test Case

What's To Do: Retraction Watch

New post| Science retracts two papers for image manipulation

mailbox:///C:/Users/Lanie/AppData/Roaming/Thunderbird/P...

W

Subject: [New post] Science retracts two papers for image manipulation From: Retraction Watch <comment-reply@wordpress.com> Date: 5/29/2014 6:22 PM To: hzhil@verizon.net

Respond to this post by replying above this line

New post on Retraction Watch

Science retracts two papers for image manipulation by ivanoransky

Science has retracted two papers by Frank Sauer, of the University of California, Riverside, after the university found evidence of serious image manipulation. Here's the notice, signed by Science editor-in-chief Marcia McNutt:

Read more of this post

ivanoransky | May 29, 2014 at 6:22 pm | Categories: freely available, germany retractions, image manipulation, science (journal) retractions, united states | URL: http://wp.me/pYKIt-5nN

) See all comments Like

<u>Unsubscribe</u> to no longer receive posts from Retraction Watch. Change your email settings at <u>Manage Subscriptions</u>.

Trouble clicking? Copy and paste this URL into your browser: http://retractionwatch.com/2014/05/29/science-retracts-two-papers-for-image-manipulation/

Thanks for flying with (1) WordPress.com

Uri Simonsohn's Blog

Data Colada

Thinking about evidence and vice versa

One size won't fit all: Each case will require its own set of analyses

Main menu •<u>About This Site</u>

Nothing Found

Apologies, but no results were found for the requested archive. Perhaps searching will help find a related post.

Search

3

Search

Tag Cloud

Search

Recent Comments

RSS

 RSS - Posts
 © Science Fraud 2012. Got a legitimate problem with something here? Let's talk
 Proudly powered by WordPress

Paul Brookes

497 papers for which data integrity had been questioned. ... 70 (14%) were subjected to some type of corrective action.

Replacement Blog (under construction) coming soon

Integritywatchforscienceandmedicine.com Goal: to reduce scientific misconduct by providing a site where suspicious findings can be gathered, aired and discussed

- A replacement for Science Fraud where people can post questions regarding specific image manipulations and data anomalies
- A site to direct whistleblowers to resources for data analysis
- A site for posting methods of data analysis
- A place to talk about the latest news relative to scientific integrity and to report the latest from *PubPeer*

The Obligations for Journals


- Run every submission through plagiarism testing
- Require that complete images for gels be submitted for review
- All raw data must be posted and publically accessible
- Don't be afraid of lawsuits ~ the truth is the best defense

www.helenezhill.com

imparity with a constant a con-

Have Comments?

Helene Z. Hill, Ph.D.

Please visit our most recent preprint: Pitt, JH and Hill, HZ. Statistical Detection of Potentially Fabricated Data. Posted on arXiv: 1311.5517, and on Figshare: http://dx.doi.org/10.6084/m9.figshare.858921

I made it in Nature !! http://www.nature.com/news/research-ethics-3-ways-to-blowthe-whistle-1.14226!! 11/27/13.

And I published an Opinion in The Scientist: http://www.the-scientist.com/?articles.view /articleNo/39139/title/Opinion--Reducing-Whistleblower-Risk/

Welcome to my WebPage. Here you will find the story of a woman's struggle to make her mark in the modern scientific world in the face of uncounted obstacles. Read on (if you want to know more, click on the links -- underlined text in red):

In October of 2003, I filed a case for qui tam in the Federal District Court of Newark charging my

lelene Z Hill, P

of 4