FACS STUDY

Experiment Name : Cell separation by FACS (${ }^{3} \mathrm{HTdR}$ cluster, 50% labeling, two dye conc.) Exp. \#: 1;

Experiment performed by: A. Bishayee
Date: 06/08/99 06/05/00

1. Set the rocker-roller at $37^{\circ} \mathrm{C}$ incubator with $5 \% \mathrm{CO}_{2}$, set the Coulter Counter, wash cells (from two $175 \mathrm{~cm}^{2}$ flasks, subcultured $\mathrm{I}: 2,24 \mathrm{~h}$ before) with PBS, trypsinize cells, each resuspend in 9 ml MEMB, pool, pass five times through 3 cc syringe with 21 gauge needle, perform cell count by transfering 100 ul in Coulter cup containing 20 ml isotone (Coulter balanced electrolyte solution)
2. Dilute to $\sim 2,000,000$ cells $/ \mathrm{ml}$ in MEMB [Actual count : cells/ml)
3. Transfer 1 ml of cell suspension into eight 14 ml tubes (Falcon plastic test tube, $17 \times 100 \mathrm{~mm}$) labeled 1-8 both on cap and wall
4. Keep the tubes in the roller for $3-4 \mathrm{~h}$ at $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$

Date/Time:

5. Prepare MEMB containing radioactivity in hood
$100 \mu{ }^{3} \mathrm{HTdR}$ (Stock : $1 \mu \mathrm{Ci} / \mu \mathrm{l}$ on $\quad+49 \mathrm{ml} \mathrm{MEMB}$
6. After 3-4 h, remove tubes from roller and add MEMB with or without radioactivity according to Table below.

Date/Time:

Tube $\#$	3 HTdR $\mathrm{uCi} / \mathrm{ml}$	Cells in MEMB (ml)	MEMB (ml)	MEMB + ${ }^{3} \mathrm{HTdR}$ (ml) $[20 \mathrm{uCi} / \mathrm{m}$ $1]$	CFDA in PBS $(0.05$ $\mathrm{uM})$ (ml)	CFDA in PBS $(0.1 \mathrm{uM})$ (ml)	PBS (ml)
1	0	1.0	1.0	0	0	0	2
2	0	1.0	1.0	0	0	0	2
3	0	1.0	1.0	0	0	0	2
4	0	1.0	1.0	0	0	0	2
5	10	1.0	0	$\Omega+1$	2	0	
6	10	1.0	0	$\Omega .1 \mid$	2	0	
7	10	1.0	0	$\Omega 子 1$	0	2	
8	10	1.0	0	0.31	0	2	

7. Return test tubes to roller for 12 h

Date/Time:

8. Next day, while test tubes are in roller label 8 tubes ($13 \times 100 \mathrm{~mm}$ VWR glass test tube)
9. After $\sim 12 \mathrm{~h}$ incubation period, remove tubes and centrifuge at 2000 rpm at $4^{\circ} \mathrm{C}$ for 10 min (precooled centrifuge). Date/Time:
10. Remove buckets from centrifuge and carefully remove $150 \mu \mathrm{l}$ of supernatant and place in prelabeled tubes.
11. Decant supernatant, click tubes, vortex, resuspend in 10 ml wash MEMA
12. Centrifuge tubes for 10 min at $2000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$
13. Decant supernatant, click tubes, vortex, resuspend in 10 ml wash MEMA
14. Centrifuge tubes for 10 min at $2000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$
15. Decant supernatant, click tubes, vortex, resuspend in 10 ml wash MEMA
16. Centrifuge tubes for 10 min at $2000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$
17. Decant supernatant, click tubes, vortex, resuspend in 2 ml of PBS , syringe and perform cell count as well as radioactivity count by transferring aliquots.
18. Add 8 ml of PBS in each tube, vortex and transfer the content to $15-\mathrm{ml}$ plastic centrifuge tube
19. Centrifuge tubes for 10 min at $2000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$
20. Decant supernatant, click tubes, vortex
21. Add 2 ml of 0.05 or 0.1 uM CFDA in prewarmed PBS as per the Table and only PBS in the remaining tubes.
22. Incubate all tubes at $37^{\circ} \mathrm{C}$ for 15 min .
23. Centrifug tubes for 10 min at $2000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$
24. Decant supernatant, click tubes, vortex, add 2 ml prewarmed MEMA
25. Incubate all tubes at $37^{\circ} \mathrm{C}$ for 30 min .
26. Centrifuge and decant the supernatant, suspend in 5 ml MEMA
27. Transfer the content from tubes 1-4 to 5-8 (1 to $4 ; 2$ to $5 \ldots$ etc)
28. Centrifuge, decant the supernatant
29. Transfer the cell suspension in polypropylene microcentrifuge tubes with attached caps (Helena Plastics, 400 ul) using 200 ul pipet tips
30. Again add 200 ul cold MEMA, resuspend and transfer the cell suspensions in the same polypropylene microcentrifuge tubes (Total volume $\sim 400 \mathrm{ul}$)
31. Centrifuge tubes for 5 min at $1000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$
32. Transfer tubes at $10^{\circ} \mathrm{C}$ for 72 h .

Date/Time:
31. After 72 h , carefully remove the supernatant from the top, resuspend pellet in 200 ul wash MEMA and transfer the content to eight 15 ml tubes containing 10 ml PBS by using pasteur pipet

Date/Time:
32. Again add 200 ul PBS in microcentrifuge tubes, resuspend and transfer the cell suspensions in 15 ml tubes
33. Centrifuge the tubes for 10 min at $2000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ (precooled centrifuge)
32. Decant supernatant, click tubes, vortex, pooled cells from two tubes, centrifuge, decant the suoernatant, resuspend in 2 ml PBS with 0.005 mM EDTA, syringe and transfer aliquots (100 ul) for cell count and radioactivity count
33. Centrifuge, decant, resuspend in 1 ml PBS with 0.005 mM EDTA to have $\sim 10,000,000$ cells $/ \mathrm{ml}$ for each tube and transfer $\sim 1 \mathrm{ml}$ in Falcon $12 \times 75 \mathrm{~mm}$ polystyrene 6 ml tube, wrap the tubes with aluminium foil, put in ice and transfer for FACS study.

Preparation of $0.1 \mu \mathrm{M}$ CDCF in POS
(0) Take are component A and B, thaw chem
(2) Add $90 \mu \mathrm{ul}$ of DMSO frow component B to component A. (Final cone $=c o \mathrm{mM}$)

(1) Take sue of 10

$$
\begin{aligned}
& \operatorname{siv}=s i \sqrt{2} \\
& 101 \phi \phi \phi \times v_{1}=10, \phi \phi 0 \times 10 \mu \mathrm{~m} \\
& \text { lome }+ \text { lone } \Rightarrow 10 \mu \mathrm{~m} \\
& \begin{array}{l}
\downarrow \\
1: 10
\end{array} \\
& 300 \mu l \rightarrow 3 n e \\
& \text { IMM of COCF } \\
& 26 / 19100
\end{aligned}
$$

$$
\begin{array}{ll}
203 & \frac{737}{663} \\
683 \\
2,732,000 \text { cells }
\end{array}
$$

$$
\begin{aligned}
& 1715,1714,1746 \\
& 1725 \\
& 1725 \times 4000=6,900,000 \text { celle/he } \\
& 2,200,000 \text { cell } / \mathrm{me} \times(0)=\frac{22000000}{6,900,000} \\
& =3.2 \text { Ne } \\
& 3.2 \text { cells }+6.8 \text { neltems } \\
& =511,414,
\end{aligned}
$$

$$
M S=\text { soue }
$$

6
$\left.\begin{array}{llll}1 & 157, & 164, & 133 \\ 2 & 155, & 173, & 156 \\ 3 & 154, & 136, & 152 \\ 4 & 131, & 123, & 119\end{array}\right\}$

Cael cant $789,791,759$
$\left.\begin{array}{cccc}5 & 161, & 152, & 166 \\ 6 & 139, & 176, & 126 \\ 9 & 132, & 142, & 155 \\ 8 & 137, & 168, & 176,15 / 5\end{array}\right\}$

