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Abstract 

Scientific fraud is an increasingly vexing problem.  Many current programs for fraud detection 

focus on image manipulation, while techniques for detection based on anomalous patterns that 

may be discoverable in the underlying numerical data  get much less attention, even though these 

techniques are often easy to apply.  We employed three such techniques in a case study in which 

we considered data sets from several hundred experiments. We compared patterns in the data 

sets from one research teaching specialist (RTS), to those of 9 other members of the same 

laboratory and from 3 outside laboratories.  Application of two conventional statistical tests and 

a newly developed test for anomalous patterns in the triplicate data commonly produced in such 

research to various data sets reported by the RTS resulted in repeated rejection of the hypotheses 

(often at p-levels well below 0.001) that anomalous patterns in his data may have occurred by 

chance.  This analysis emphasizes the importance of access to raw data that form the bases of 

publications, reports and grant applications in order to evaluate the correctness of the 

conclusions, as well as the utility of methods for detecting anomalous, especially fabricated, 

numerical results.   

Key words: statistical forensics, data fabrication, tissue culture, triplicate colony counts, terminal 

digit analysis, radiation biology, cell biology 

1. INTRODUCTION 

During the past decade, retractions of scientific articles have increased more than 10-fold (Van 

Noorden 2011).  At least two-thirds of these retractions are attributable to scientific misconduct: 

fraud (data fabrication and falsification), suspected fraud, duplicate publication, and plagiarism 
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(Fang, Steen et al. 2012).  Techniques for early identification of fraudulent research are clearly 

needed. Much current attention has been focused on sophisticated methods for detecting image 

manipulation (Rossner and Yamada 2004) and their use is encouraged on the website of the 

Office of Research Integrity (ORI) of the United States Department of Health and Human 

Services. But  statistical methods which can readily be used to identify potential data fabrication 

(Mosimann, Wiseman et al. 1995; Mosimann, Dahlberg et al. 2002; Al-Marzouki, Evans et al. 

2005; Baggerly and Coombes 2009; Hudes, McCann et al. 2009; Carlisle 2012; Simonsohn 

2012)  are all but ignored by the ORI and the larger world. We believe that routine application of 

statistical tools to identify potential fabrication could help to avoid the pitfalls of undetected 

fabricated data just as tools such as, for example, CrossCheck and TurnItIn are currently used to 

detect plagiarism. 

The first step in using statistical techniques to identify fabricated data is to look for anomalous 

patterns of data values in a given data set (or among statistical summaries presented for separate 

data sets), patterns that are inconsistent with those that might ordinarily appear in genuine 

empirical data.  That such patterns are, indeed, anomalous may potentially be confirmed by using 

genuine data sets as controls, and by using simulations or probabilistic calculations based on 

appropriate models for the data to show that they would not ordinarily occur in genuine data. 

The existence of these anomalous patterns in given suspect data sets may be indicative of serious 

issues of data integrity including  data fabrication (Al-Marzouki, Evans et al. 2005), but they 

may also arise as a result of chance. Hence it is of considerable importance to have statistical 

methods available to test the hypothesis that a given anomalous pattern in a data set may have 

occurred as the result of chance.   
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For example, Mosimann et al. (Mosimann, Dahlberg et al. 2002) identified instances of 

fabricated data based on the observation that in experimental data sets containing count data in 

which the terminal (insignificant) digits are immaterial and inconsequential (hence not under the 

control of the investigator) it is reasonable to expect and generally the case that these 

inconsequential digits will appear to have been drawn at random from a uniform population. 

When terminal digits of the count values in a data set of this type do not appear to have been 

drawn from a uniform population (as may be tested using the Chi-square goodness of fit test) this 

may indicate that they have been fabricated.   

A test like this is not entirely foolproof. Before applying it, one must ask whether there really is 

any evidence, beyond mere supposition, that terminal digits of data of the given kind should be 

random in the sense of uniform. Ideally one would like to have a probability model for the 

underlying randomness in the experimental data and use it to show that the distribution of 

terminal digits of counts values in data sets consistent with that model will be uniform (Hill and 

Schürger 2005). Alternately one might be able to run simulations based on an appropriate 

probability model and demonstrate that the terminal digits of the counts in the simulated data sets 

do generally appear to have been drawn uniformly. Finally, one could try to validate the 

assumption that terminal digits of counts in legitimate data sets are uniform, empirically, by 

testing the uniformity of terminal digits in indisputably legitimate experimental data sets of 

exactly the same type, constructed using the same protocols, as that of the suspect data.  

Simonsohn (Simonsohn 2012)  uncovered fabrications in several  psychological research papers 

based entirely on the summary data available in published reports. He noted that despite the fact 

that the means of various variables measured in the study varied considerably, their standard 
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deviations were remarkably similar, and hypothesized that this would not be the case were the 

results derived from genuine experimental data. He confirmed his hypothesis with simulation 

and empirical observation of the distribution of standard deviations in comparable studies. 

When we have an appropriate probability model available for the underlying experiment that 

purportedly produced the suspect data, we can often apply our knowledge of probability theory 

to determine the probability that an anomalous pattern in question may have occurred by chance 

in the data set under consideration. Where that probability is less than some reasonable level, we 

term our tests significant, and, in the absence of any alternative explanation, may find any such 

significant results convincing evidence that the data in question has been fabricated.  

2. The Case Study: Concerns about the legitimacy of raw data generated by one Research-

Teaching Specialist (RTS) in the laboratory in which one of us was a member led us investigate 

data sets of his which had been used in several publications, a grant application and its renewal.  

We also had access to data sets generated by nine other researchers in the same laboratory who 

followed the same or similar protocols, as well as data from three outside laboratories that 

employed similar techniques. By applying the same investigating techniques to their data sets, 

we were able to use them as controls. Copies of the laboratory notebooks containing the raw data 

that we analyzed were in the form of PDF files which we transferred into Excel spreadsheets (cf 

Supplementary Material).  

We believe that this was a unique situation, as we were able to review and compare essentially 

all the data from a single laboratory, data produced by a number of independent investigators 

using the same or similar research techniques, over such a long period of time.  In particular it 

allowed us to determine whether suspect patterns that we had already noted in a limited number 
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of data sets from the RTS whose data had raised the initial concerns appeared in other data sets 

of his and whether the same patterns might be found in the data sets from the other investigators.   

These other than expected patterns in the RTS's data included: (1) a non-uniform distribution of 

insignificant terminal digits; (2) an unusually large frequency of equal terminal digit pairs (i.e. 

equal right-most and second right-most digits); and (3) a surprisingly large number of triplicate 

colony and cell counts in which a value near the average value of the triple or even that average 

value appeared as one of the constituent counts of the triple.   

None of these patterns were evident in any of the data sets reported by the nine other 

investigators in the same laboratory, or in data sets that we obtained from three other 

independent, outside researchers.   We believe this is a matter of significant concern.  

We can use the well-known chi-square goodness of fit test to determine whether non-uniformity 

of terminal digits can be considered significant.  Additionally, a straightforward test of 

significance based on the binomial distribution can be used to test the significance of an 

unusually high frequency of equal terminal digit pairs, but there is no such standard test to 

determine the significance of unusually large numbers of triplicate counts containing values near 

their average. Random variation in these triplicate data that are common components of 

pharmacological, cell biological and radiobiological experimentation, can be analyzed by 

modeling the triples as sets of three independent, identical Poisson random variables.  A major 

focus of this study is on developing a method to calculate bounds and estimates for the 

probability that a given set of n such triplicates contains k or more triples which contain their 

own mean. We use these bounds and estimates in tests of the hypothesis that the observed 
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unusually high incidence of mean containing triples in certain data sets may have occurred by 

chance.    

Our methods should be useful to laboratory investigators in therapeutic, toxicological, cell and 

radiation biological studies involving evaluation of cell survival after various treatments.  Much 

of our analyses pertain to triple replicates such as are commonly used in cell survival protocols 

(Bonifacino 1998; Munshi, Hobbs et al. 2005; Katz, Ito et al. 2008). 

3. Experimental Protocols: The experiments we analyzed followed the same or very similar 

protocols and employed, with few exceptions, the same Chinese hamster cell line.  The cells, 

harvested from mass culture, were counted, apportioned equally into culture tubes and incubated 

overnight with radioisotopes.  They were washed free of radioactivity and transferred to new 

tubes for a 3-day incubation at low temperature (10.5o C) to allow for the given isotope to decay.  

They were then harvested, triplicate aliquots were suspended for cell counts using a Coulter ZM 

particle counter and aliquots were diluted and plated onto tissue culture dishes in triplicate in 

order that single cells could grow into colonies which were stained and counted (manually) after 

about a week. 

4. Data sets and Probability Model: The primary data sets with which we are concerned are 

collection of triples of integer Coulter ZM counts and triples of colony counts. The former are 

copied by hand into a notebook from an LED digital readout of the Coulter ZM counter that 

counts single cells as they pass randomly through a narrow orifice, the latter are counted by 

hand. The colony triples are counts of the number of colonies formed by the surviving cells. The 

counts in each Coulter triple and each colony triple are modeled probabilistically as independent, 
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identical Poisson random variables. The Poisson parameter of these triples will, of course, vary 

from triple to triple.  

Throughout this report, the accumulated data from the RTS’s experiments are independently 

paralleled to the accumulated data of other investigators including nine members of the 

laboratory other than the RTS who utilized the same Coulter counter and/or counted colonies in 

the same manner, two professors from out-of-state universities who contributed triplicate data 

from their Coulter ZM counters, and triplicate colony counts from an additional independent 

laboratory.   

5. Analysis of Triplicate Data: Many radiobiological experiments result in data sets consisting 

of triplicate counts where the means of the triples are the key values that are associated with the 

corresponding treatments in subsequent analyses. An investigator wishing to guide the results of 

such experiments would have to arrange the data values in each of the triples so that their means 

are consistent with the desired results. The quickest and easiest way to construct such triples 

would be to choose the desired mean (or a close approximation) as one of the three count values 

and then, using two roughly equal constants, calculate the other two values as this initial value 

plus or minus the selected constants.   

Data sets constructed in this manner might then be expected to include either (1) an unusually 

high concentration of triples whose mid-ratio (the ratio of the difference between the middle 

value and the smallest value to the difference between the largest value and the smallest value 

(the gap) was close to 0.5; or (2) an unusually large number of triples that actually include their 

own (rounded) mean as one of their values.  

5.1 Initial mid-ratio review:  Having observed what appeared to us to be an unusual frequency 

of triples in RTS's data containing a value close to their mean, we used R to calculate the mid-
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ratios for all of the colony data triples that were available to us. We then constructed histograms 

of the resulting data sets. The results are shown in Figures 1A and 1B.  The histogram of mid-

ratios for RTS's colony triples exhibits a distinct predominance of mid-ratios in the range 0.4 to 

0.6, while the histogram of mid-ratios of the data triples recorded by the nine other members of 

the laboratory is fairly uniform over the ten sub-intervals. The dramatic contrast between the two 

histograms seems a clear indication that RTS' data may have been manipulated to guide the mean 

values of its triples.   

Fig. 1: Distributions of the mid-ratios (middle – low)/(high – low) for colony triples   A. RTS, 1343 triples, 128 

experiments; B. Other investigators, 572 triples, 59 experiments. 
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5.2 Appearance of the Mean in Triplicate Samples: We extended our investigation by writing 

an R program to identify and count triples that contained their rounded average.  (Figure 2 is a 

scan of a page from one of the RTS’s notebooks.  Triples that contain their rounded average are 

highlighted in blue. In this instance six of the ten triples are highlighted.)  Of the 1343 complete 

colony triples in RTS's data, 690 (more than 50%) contained their rounded average, whereas 

only 109 (19%) of the 572 such triples from other investigators did.  
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Figure. 2: PDF Image of Colony Counts from an experiment performed by RTS. The rounded average 

(highlighted in blue) appears as one of the triplicate counts in 6 of the 10 samples (Ppoibin Prob = 0.00169, See 

Section 5.7, below.).   

 

Given the marked difference between the percentage of the RTS's triples that contain their mean 

and the corresponding percentage of other investigators' triples that do so, and the similar 

disparity between the histograms of mid-ratios of the RTS's triples and those of other 

investigators, it is reasonable to ask whether the apparently excessive numbers of mean/near 

mean containing triples in the RTS's data sets might plausibly have occurred by mere chance. In 

order to answer that question we used a probability model for such triplicate data to calculate 

bounds and estimates of the probability that a given set of n such triplicates contains k or more 

triples. Using these estimates we are able to test the chance hypothesis.  

5.3 The Model for Triplicate Data: The differences between the three actual count values in 

each colony count triple arise from random differences in the number of cells actually drawn and 
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transferred to the three dishes and the randomness in the numbers of cells that survive the 

treatment applied to the cells in that triple. As noted above the random variables that correspond 

to the number of cells that are originally in each of the three dishes can be modeled 

probabilistically as the values of three independent, identical Poisson random variables. The 

common Poisson parameter  𝜆0 of those three variables will be the (unknown) expected value of 

those cell counts.  

Since the cells in the three dishes have all been exposed to the same level of radiation, the 

probabilities that a given cell survives to generate colonies should be the same in each of the 

three dishes. Accordingly, the actual number of survivor colonies in the three dishes will have a 

binomial distribution with the same p parameter (the common individual cell survival rate) and 

differing n values corresponding to the numbers of cells on each dish. It is easy to show that 

these resulting counts have Poisson distributions with parameter λ=𝜆0p. 

Thus the three values in each set can be modeled as the values of three independent Poisson 

random variables sharing a common parameter λ. The actual value of λ varies from triple to 

triple as it depends both on the specific 𝜆0 associated with the initial cell count Poisson 

distribution and the specific p associated with the treatment which gave rise to the given triple. 

The likelihood that one of the counts in the triple is equal to or near the triple mean value 

depends on the value of this parameter.  

Given the value of their common Poisson parameter λ a relatively straightforward calculation can 

be used to find the probability that a triple generated by independent, identical Poisson random 

variables includes its mean (see Appendix). The values of the various λ parameters of the 

Poisson random variables that gave rise to the triples in our data set are, of course, unknown to 
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us, but, in as much as actual colony count values are all less than 400 we can safely assume that 

the λ parameters of the underlying Poisson random variables are certainly less than 1000. 

We wrote an R program to calculate the probability that a triple generated by independent, 

identical Poisson variables with known parameter λ includes its own (rounded) mean value and 

used it to calculate and create a table (referred to below as the MidProb table) of this probability 

for all integer values of λ from 1 to 2000 and, as the variation of these probabilities between 

successive integer values of λ greater than 2000 was negligible we extended the table by 

calculating the value of the probability for values of λ that were multiples of 100 between 2100 

and 10000, and multiples of 1000 between 11000 and 59000 (see Table 1 for the first 25 

entries).  Our calculations showed that as λ increased from 1 to 3, the probability that a randomly 

generated triple contains its own mean increases from about 0.27 to slightly more than 0.40 and 

then decreases as λ continued to increase. We were thus assured that no matter what the value of 

λ for the Poisson variables that generated a given triple, the probability that the triple would have 

included its mean as one of its three elements would not exceed 0.42.  

5.5 Hypothesis testing I -- A non-parametric test: The observation that the probability that a 

triple generated by independent, identical Poisson variables with known parameter λ includes its 

own (rounded) mean value never exceeds 0.42 gives us the ability to construct a crude test of the 

hypothesis that an observed, suspect high number of mean containing triples in a given collection 

of triples may have occurred by chance.  Using the number k of triples with gap two or more that 

contain their means and the number n of triples in the collection we need only find the binomial 

probability p of k or more successes in n independent Bernoulli trials where the probability of 

success is 0.42. If the probability p is less than the chosen α level of the test we reject the null 
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hypothesis at that significance level. The test is crude in the sense that the calculated p is not the 

p-level of the test, it is simply a (possibly gross) over estimate of the p-level.  

Table 1. Partial MidProb Table. Probability that a triple generated by 3 independent 

Poisson random variables with parameter  contains its mean for = 1 to 25.  It is clear that 

 continues to decrease after  = 4. 

 P  P  P  P  P 

1 0.267 6 0.372 11 0.317 16 0.281 21 0.254 

2 0.387 7 0.359 12 0.309 17 0.275 22 0.250 

3 0.403 8 0.348 13 0.301 18 0.269 23 0.246 

4 0.397 9 0.337 14 0.294 19 0.264 24 0.242 

5 0.385 10 0.327 15 0.287 20 0.259 25 0.238 

When we apply this test to determine how likely it is that 690 or more of the 1343 colony triples 

in RTS's data might have contained their rounded average by chance, we find that it is less than 

2.85 x 10−12, an extremely significant result.   

Since there are only 109 mean containing triples among the 572 from other investigators, and 

109 is considerably less than the expected number of successes in 572 Bernoulli trials with a 

success probability of 0.42 it is immediately clear that the probability of having 109 or more 

mean containing triples is reasonably large -- indeed it is essentially one.  

5.7 Hypothesis testing II -- Using λ to obtain p-values: It is important to have a more sensitive 

test, as we can use it to confirm the validity of our model by applying it to what we believe to be 

legitimate experimental data. To do so we use a heuristic method to estimate the actual 

probability that a given collection of n triples includes k mean containing triples. This allows us 

to provide an actual p-value for the one-tailed test we apply for seemingly high numbers of mean 
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containing triples and thereby allows us to determine whether the numbers of mean containing 

triples in our controls are consistent with our model or whether they are also significantly 

different from what our model indicates.   

We start with the observation that the results of our calculations in the MidProb table show that 

the probability that a triple of independent, identical Poisson random variables includes its own 

mean decreases rapidly as λ increases. For example the probability that a triple contains its mean 

if it is generated by Poisson random variables with λ = 20 is about 0.26, but with λ = 50 it is less 

than 0.18, and with λ = 100 it is less than 0.14 (it even falls to 0.032 when λ = 2000).   

We applied a heuristic approach to use our table of calculated values of this probability to 

estimate (rather than merely bound) the probability that a given collection of n triples that are 

hypothesized to have been drawn as triples of independent, identical Poisson variables has as 

many or more than the actual number of mean containing triples than it was observed to contain. 

We do not know the actual λ values of the Poisson random variables that (hypothetically) 

generated the triples in the data sets, but the mean of any actual triple is a reasonable estimate of 

the λ parameter of the variables that gave rise to it. (The mean is the maximum likelihood 

estimator in this case.). We can then look up these (rounded) λ values in the MidProb table to 

obtain an estimate of the probability that had the triple been randomly drawn it would contain its 

own mean. 

We are thus able to consider the events that the various individual triples of the collection 

contain their own means as successes in individual, independent, Bernoulli trials each with a 

known probability of success. The random variable (statistic) which takes as its value the number 

of triples in the given data set that contain their own means is the sum of the Bernoulli random 

variables that indicate success in the various trials. These Bernoulli trials have the known 
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(actually estimated) probabilities of taking the value 1 that we obtain from the MidProb table as 

described above.  

Sums of such independent, not necessarily identically, distributed Bernoulli random variables are 

said to be Poisson binomial random variables and to have a Poisson binomial distribution. A 

Poisson binomial random variable that is the sum of n Bernoulli random variables can potentially 

take any of the values 0,1,..., n, and the probability that it takes, or is greater than, or equal to any 

of these potential values is completely determined by the probabilities 𝑝1,𝑝2,...,𝑝𝑛 that the 

constituent Bernoulli random variables take the value 1.  

Few (if any) standard statistical packages include functions for calculating Poisson binomial 

distributions. Although there is a straightforward algorithm which can, in principle, be used to 

calculate probabilities for the distribution function of a Poisson binomial random variable given 

the success probabilities of the individual Bernoulli variables 𝑝1,𝑝2,...,𝑝𝑛 ,  issues of numerical 

stability in these calculations can arise for even moderately large values of n, and processing 

times increase exponentially as n increases.  Nonetheless, we were able to take advantage of an 

efficient algorithm that has recently been developed and implemented as a package for R (Hong 

2011) to find exact values for the tail p-values that we wish to have in testing our null 

hypothesis.  

The function ppoibin in the R package poibin accepts as input two parameters, an integer j and a 

vector of probabilities  𝑝1,𝑝2,...,𝑝𝑛 and returns the probability that the Poisson binomial random 

variable that corresponds to that vector of probabilities takes a value less than or equal to j. To 

use it to find the probability that there are k or more mean containing triples in a collection of 

triples generated by groups of three Poisson random variables with common probabilities  
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𝑝1,𝑝2,...,𝑝𝑛, we execute ppoibin with the value j=k-1 as the first parameter and the given 

probabilities as the second and subtract the result from 1.  

We applied this more refined test to the RTS collection of 1343 complete colony triples and 

found that, given the likely λ values that had given rise to the individual triples in the collection, 

the probability of the observed 690 or more mean containing triples is approximately 6.26 x 

10−13  (not surprisingly an extremely significant result). Applying the same test to find the 

probability of finding 109 or more mean containing triples among the 572 complete colony 

triples that had been recorded by the other investigators in the same laboratory, we found that the 

probability was 0.47, and the probability of 109 or fewer such triples is 0.58; results that are 

entirely consistent with our hypothesis.  

5.8 Hypothesis testing III -- Normal estimation of p-values: Given the success probabilities of 

the individual Bernoulli variables 𝑝1,𝑝2,...,𝑝𝑛 the expectation of their Poisson binomial sum is μ 

= ∑ 𝑝𝑖
𝑛
𝑖=1 and its variance 𝜎2 = ∑ 𝑝𝑖

𝑛
𝑖=1 (1 − 𝑝𝑖) . Both are easy to calculate.  When the values of 

the 𝑝𝑖
′𝑠 are bounded below, the (Lindeberg-Feller) Central Limit Theorem applies and we can 

obtain reasonable approximations of the (upper) tail probabilities of a Poisson binomial random 

variable using normal probabilities.  

Where an efficient implementation of an algorithm for calculating exact Poisson binomial 

probabilities is not available, we can use a normal approximation which with a second order 

correction (Volkova 1995) provides a quite precise estimate.  Hong (2011) reports the results of 

multiple simulations that indicate that by including the second order correction the normal 

approximations to upper tail probabilities will usually -- but certainly not always -- return 

probability values marginally higher than the true tail probabilities. The normal distribution we 
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use to approximate a Poisson binomial is the normal with the same mean and standard deviation 

as the Poisson binomial.    

Using the normal approximation has a second advantage, in as much as the z-values we calculate 

in order to look up normal probabilities are informative without recourse to an actual table of 

normal probabilities. Virtually all students of statistics learn that in normal populations upper 

tails corresponding to z-scores of 2 or more or 3 or more are quite unlikely -- with the first 

having a probability of less the 0.025 and the second  having a probability of less than .0015.  

To use this approach to approximate the probability of the 690 or more mean containing triples 

among the RTS' 1343 complete triples, we first obtain (to two decimal places) µ=220.31 and 

σ=13.42. Using a standard correction for continuity, the z-value we use to find the probability of 

690 or more mean containing triples is 
689.5−220.31

13.42
= 34.97 so large that the upper tail 

probability is effectively indistinguishable from 0, hence significant at virtually any level.  

It is important to keep in mind that the normal distribution probabilities are approximations, not 

exact values, of the Poisson binomial probabilities. Unfortunately the normal approximations of 

upper tail Poisson binomial probabilities are generally less than the true values. In this instance, 

however, the aforementioned Volkova correction provides the same estimate. 

5.9 Application to Coulter Counts: While the means of colony triples are the key values of 

interest to investigators, means of Coulter triples are not as significant. Thus there is less reason 

to believe that an investigator wishing to guide results might be inclined to construct Coulter 

triples that include their own means as one of their values. Nonetheless we extended our 

investigation and counted the number of mean contain triples in both the RTS' Coulter triples and 
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those from other investigators.  The results are interesting and illustrate the power and 

importance of the more sensitive tests we discussed in 5.7 and 5.8 above.  

Coulter data from the RTS included 1717 complete triples, 173 of which included their rounded 

mean, while we had 929 complete Coulter triples from other investigators in the same lab, 36 of 

which included their rounded means. Application of the crude test described in 5.6 gives no 

reason for concern as in both cases the numbers of mean containing triples are consistent with 

our belief that the probability that any given triple includes its mean will be less than 0.42.  

When, however, we apply the more refined analysis introduced in sections 5.7 and 5.8, we find 

reason once again to question RTS' data. Coulter count values are in a much higher range than 

colony count values, thus the Poisson random variables that give rise to them have λ values in a 

higher range and probabilities that Coulter triples include their means tend to be lower. Using our 

table of probabilities, triples of independent Poisson random variables with given λ parameters 

that contain their own mean, we found that were we to randomly generate 1717 Poisson triples 

with respective λ parameters set equal to the means of the RTS' actual triples the expected 

number of mean containing triples would be 97.74 and the standard deviation 9.58. Given this 

(and using the normal approximation to the Poisson binomial) the 7.80 z-score that corresponds 

to the actual number of 173 mean containing triples in the RTS' data makes it immediately clear 

that it is exceedingly unlikely we might have encountered such a large number of mean contain 

triples by chance. The actual Poisson binomial tail probability is 6.26 × 10−13  . 

When we apply the same analysis to the Coulter triples we obtained from other investigators in 

the same lab the results are well within the expected range.  According to our calculations the 

expected number of mean containing triples would be 39.85 and the standard deviation is 6.11. 
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Hence the z-value corresponding to the actual number of 36 mean containing triples is -0.71 and 

the actual p-value is 0.76, entirely consistent with our model. 

We applied the same analysis to the triplicate Coulter count data sets we had from two 

investigators in other labs and triplicate colony counts from an investigator in another lab and the 

results for all of these sets are summarized in Table 2 below. 

Table 2: Summary results for analysis of mean containing triples for colony and Coulter 

count triples from RTS, 9 other investigators from the same lab, and investigators in 

outside labs 

 
 

TYPE 

 
 
INVESTIGATOR 

 
NO. 

EXPS 

 
NO. 

COMPL/TOTAL 

NO. 
W 
MEAN 

 
NO. 

EXPECTED 

 
 

STD 

 
Z-

VALUE 

 
 

P>K 

COLONIES RTS 128 1343/1361 690 220.3 13.42 34.97 0 

COLONIES Others 59 572/591 109 107.8 9.23 0.08 0.466 

COLONIES Outside lab 1 1 49/50 3 7.9 2.58 -2.11 0.991 

COULTER RTS 174 1716/1717 173 97.7 9.58 7.80 6.26x10-13 

COULTER Others 103 929/929 36 39.9 6.11 -0.71 0.758 

COULTER Outside lab 2 11 97/97 0 4.4 2.03 -2.42 1.00 

COULTER Outside lab 3 17 120/120 1 3.75 1.90 -1.71 0.990 

 

5.10 Probability model for Mid-Ratios: We took a similar approach to evaluating the 

significance of the occurrence of high percentages of triples having mid-ratios close to 0.5 to that 

which we used when dealing with triples that contain their mean. In like manner, we wrote an R 

function to calculate the probability that the mid-ratio of a triple with a given parameter λ falls 

within the interval [0.40,0.60]. Using this function we calculated these probabilities for each of 
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the integer values of λ from 1 to 2000 and stored them in a table.  The results of these 

calculations showed that as λ increases from 1 to 10 the probability that a triple has a mid-ratio in 

the interval [0.40, 0.60] increases from about 0.184 to slightly more than 0.251 and decreases 

thereafter. Thus our calculated results tell us that for every value of λ, the probability that the 

mid-ratio is in the interval [0.40, 0.60] is less than 0.26. Hence, given a collection of n triples the 

probability that k or more of those triples have mid-ratios in the interval [0.40, 0.60] cannot be 

greater than the probability of k or more successes in n independent Bernoulli trials in which the 

probability of success is 0.26. As was the case when we considered triples which contain their 

mean, these Binomial probabilities can be used to provide a crude but potentially useful test of 

significance. 

We used the same heuristic approach that we had used to develop a more refined significance 

test for the occurrence of triples that contain their own means to develop a more refined 

significance test for the incidence of mid-ratios in the [0.40, 0.60] interval. This test could be of 

use in detecting instances in which an investigator wishing to guide the mean values of triplicates 

employs a reasonably subtle technique.  

6. Terminal Digit Analysis:  J. E. Mosimann and colleagues (Mosimann, Wiseman et al. 1995; 

Mosimann, Dahlberg et al. 2002) recommend a technique for identifying aberrant data sets based 

on the observation that under many ordinary circumstances the least significant (rightmost) digits 

of genuine experimental count data can be expected to be uniformly distributed and the further 

observation that when people invent numbers they are generally not uniform.   

As per our introductory remarks it is important to confirm the applicability of this expected 

uniformity in any context in which we hope to use it. The fact that, in as much as the cells 

counted in a single batch by the Coulter counter typically number in the several hundreds up to 
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the many thousands, control in selecting the batches of cells to be counted is far from precise 

enough to extend to the last digit, lends some a priori support to the expectation that terminal 

digits will be uniform. But we also ran simulations generating data sets of triples of independent 

identical Poisson random variables with comparable means, and the distributions of terminal 

digits in these sets were consistent with the hypothesis of uniformity.  

Based on these considerations we believe it is reasonable to suppose that the Mossiman 

technique applies to the various Coulter count data sets under consideration. The fact that we are 

able to apply our tests of uniformity to what we believe to be uncontested experimental data in 

the course of our test provides further of empirical confirmation of the applicability of the 

Mossiman test.   

6.1 Application of terminal digit analysis to the data sets: We counted the number of times 

each of the digits 0,1,...,9 occurred as the rightmost digit of counts copied from the Coulter ZM 

counter screen and from colony counts.  (Note that these analyses do not require that the data be 

arranged in triplicate sets.)   If these least significant digits were indeed uniform -- as they should 

be if the data was truly generated experimentally -- then our counts for each of these ten digits 

should be roughly the same. 

We obtain a more precise measure of the degree to which these distributions diverge from the 

expected uniform by applying the Chi-square test for goodness of fit. We show the actual 

distribution of terminal digits for the various full data sets we considered in Table 3, along with 

the  computed Chi-square statistics and the associated p-values.  The p-values for RTS's terminal 

digit sets result in our rejecting the null hypothesis of uniformity at any reasonable level (and 

even unreasonable levels) of significance; results for all other investigators’ data sets are 

consistent with our null hypothesis.  
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Table 3. Terminal digit analysis of Coulter and colony counts.   “Others” refers to other 

investigators in the laboratory.  Outside labs contributed two sets of Coulter data and one set of 

colony data.  Probabilities of 0 were too small to estimate. 

  Digit    

Type Investigator 0 1 2 3 4 5 6 7 8 9 Total Chi-sq P-value 

Coulter RTS 174 exps 472 612 730 416 335 725 362 422 370 711 5155 456.4 0 

Coulter Others 103 exps 261 311 295 259 318 290 298 283 331 296 2942 16.0 0.067 

Coulter Outside lab 11 exps 28 34 29 24 27 36 44 33 26 33 314 9.9 0.36 

Coulter Outside lab 17 exps 34 38 45 35 32 42 31 35 35 33 360 4.9 0.84 

Colonies RTS 128 exps 564 324 463 313 290 478 336 408 383 526 3501 200.7 0 

Colonies Others 59 exps 187 180 193 178 183 173 176 183 183 178 1814 1.65 0.996 

Colonies Outside lab 1 exp 21 9 15 16 19 19 9 19 11 12 150 12.1 0.21 

7. Equal Digit Analysis: Just as it is reasonable to expect that insignificant terminal digits in 

experimental data would be approximately uniform, it is also seems reasonable to expect that the 

last two digits of three plus digit experimental data (in which the terminal digits are relatively 

immaterial) will be equal approximately 10% of the time. We used R to count the number of 

terminal digit pairs in the RTS' and other investigators' Coulter count data and found that there 

were 291 (9.9%) equal pairs of rightmost digit pairs among the 2942 Coulter count values 

produced by investigators in the laboratory other than the RTS, while there were 636 (12.3%) 

such pairs in the RTS's 5155 recorded Coulter counts. Assuming that these right-most pairs were 

generated uniformly, the probability of 636 or more equal pairs in 5155 Coulter values is less 
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than 3.3 x 10-8, which significantly contraindicates their expected randomness.  In contrast, the 

probability of 291 or more equal pairs among 2942 Coulter values for the other researchers is 

0.587 which is consistent with our randomness hypothesis.  

8. Summary 

1. In the RTS’s experiments, the averages of triplicate colony counts appear as one of those 

counts at improbably high levels based on our model.  The rates at which triplicate colony counts 

reported by other investigators include their averages is consistent with our model.  

2. In the RTS’s experiments, the mid-ratio values of triplicate colony counts fall in the interval 

[0.4,0.6] at improbably high levels based on our model.  The rates at which mid-ratios of 

triplicate colony counts reported by other investigators fall in that interval is consistent with our 

model. 

3. Distributions of terminal digits of values in the RTS 's Coulter counts and colonies differ 

significantly from expected uniformity.  This does not hold for the colony and Coulter terminal 

digits of other workers. 

5. Significantly more than the expected one tenth of the data values the RTS recorded in his 

Coulter counts have equal terminal digits.  This does not hold for the occurrences and 

distributions of terminal doubles in the Coulter counts of other workers.  

9. Discussion 

9.1 Limitations In most case studies, the number of controls is either equal to or greater than the 

number of test values.  Since this is a post hoc study, we had no control over the numbers of data 

we analyzed.  To address our concern about smaller control sample sizes in one such instance, 

we randomly selected 314 terminal digits from the RTS’s Coulter results and ran chi-square 
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analyses 100,000 times to test for uniformity.  All of the runs would have rejected the null 

hypothesis for uniformity at the 0.00001 level; one run rejected the hypothesis at the 

0.000000001 level.  The value of 314 was selected because it is the total number of digits 

supplied by one of the two outside contributors and was the smallest of the Coulter sample sets 

with which we worked (cf Table 3).   

During the time that the RTS was working in the laboratory, few experiments were being 

performed simultaneously by others, which resulted in some temporal disparity.  However, the 

protocols that we analyzed were followed almost identically by all of the members of the 

laboratory.  There is no a priori evidence that the cells, instrumentation, equipment and 

consumable supplies used by the other researchers were any different from those utilized by the 

RTS.  There is also no evidence that different operators could influence the terminal digits seen 

on the display of the Coulter counter.  All of the investigators used similar techniques to stain 

and count the colonies.   

9.2 Power of statistics: In a recent editorial in Science, Davidian and Louis emphasize the 

increasing importance of statistics in science and in world affairs as a “route to a data-informed 

future” (Davidian and Louis 2012).  Statistical analysis of numerical data can be used to identify 

aberrant results (Tomkins, Penrose et al. 2010; Postma 2011; Tomkins, Penrose et al. 2011), 

even in esoteric studies (Brown, Cronk et al. 2005) (Trivers, Palestris et al. 2009).  Recently, a 

rigorous statistical analysis of data that purported to predict the responses to chemotherapeutic 

agents of human lung, breast and ovarian cancers demonstrated the erroneous nature of the 

results (Baggerly and Coombes 2009; Baggerly and Coombes 2011) and led to several 

retractions (Baggerly and Coombes 2010; Goldberg 2010; 2011; 2011) and a resignation.  In this 
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case, patients were potentially directly affected by the use of the wrong drug and/or the 

withholding of the right drug.   

Statistics were used to uncover fraudulent behavior on the part of Japanese anesthesiologist Y. 

Fujii who is believed to have fabricated data in as many as 168 publications (Carlisle 2012).  In 

like manner, Al-Marzouki, et al. (Al-Marzouki, Evans et al. 2005) used statistics to implicate 

R.B. Singh for fabricating data in a clinical trial involving dietary habits.  Their control, like our 

controls, was a similar trial performed using comparable methods by an outside group.  Of 

interest is the fact that Singh was unable to produce his original data for re-examination because 

it had been, he alleged, consumed by termites.  Hudes, et al. and McCann, et al. (Hudes, McCann 

et al. 2009) used statistics to detect unusual clustering of coefficients of variation in a number of 

articles produced by members from the same biochemistry department in India.  The controls for 

these studies were obtained by searching for similar studies in PubMed. Once data manipulation 

is suspected, it is up to the statistician to find the proper test(s) to reveal discrepancies – to “let 

the punishment fit the crime”, so to speak. 

9.3 Are the RTS 's data real: The consistent and highly significant improbability that any of the 

multiple anomalies observed in the RTS's data sets are likely to have occurred by chance, and the 

fact that none of these anomalies appear in either the many data sets we examined from the nine 

other investigators in the same laboratory, working under the same conditions with the same 

equipment or in the comparable data sets we obtained from investigators outside the laboratory, 

leaves us with no alternative than to believe that the RTS's data is simply not genuine 

experimental data.  
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10. Remedies  

10.1 Automated analysis can deter tampering with results: Automatic colony counters are 

commercially available, and their use in colony survival and other such studies should be 

encouraged.  The counts from particle counters such as the Coulter ZM should be recorded on a 

printer. 

10.2 Journals should require the availability and archiving of raw data.  Many now do.  This 

will permit verification, help to avoid unnecessary duplication of experimental results and 

facilitate interactions and interchanges among researchers. 

10.3 An Excel spreadsheet, available on request to perform the calculations that we have 

proposed in this article, understanding that most researchers performing these types of survival 

and related experiments are not versed in the use of the statistical program R.  The spreadsheet is 

available from Dr Pitt on request. 

Appendix 

Calculating the probability that a Poisson triple contains its rounded mean: 

As a preliminary to determining the probability that a triple contains its rounded mean, we first 

calculated the probability that a triple randomly generated by three independent Poisson random 

variables with a given λ has a gap of two or more and contains its own mean. This event is the 

union of the infinite collection of mutually exclusive events: 

𝐴𝑗= the event that the gap is j and the triple contains its own (rounded) mean, for j = 2, 3, 

4, 5, ...  

Hence its probability is, the sum of the separate probabilities of the  𝐴𝑗
′𝑠, ∑ 𝑃(𝐴𝑗)

∞

𝑗=2
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For each j the event 𝐴𝑗is itself the union of the infinite collection of mutually exclusive events: 

𝐴𝑗,𝑘= the event that the largest value in the triple is k (hence the smallest is k-j) and the 

triple includes as one of its elements its own (rounded) mean  

where, for any given j, the admissible values of k are j, j+1, j+2, j+3, ... Hence 𝑃(𝐴𝑗,𝑘) =

∑ 𝑃(𝐴𝑗𝑘)
∞

𝑘=𝑗
 

To calculate 𝑃(𝐴𝑗,𝑘) we observe that in order for the event 𝐴𝑗,𝑘to occur, the smallest of the three 

elements of the triple must be k-j, and, of course, the largest must be k, but depending on the 

parity of j there may be one or two different possible values completing the triple. When j is even 

the third must be k-j/2 as it is easy to see that this is the only integer value that can complete a 

triple {k-j,n,k} that has mean n. However, when j is odd, there are two distinct integer values that 

can complete the triple {k-j,n,k} so that its mean is n, these are: k-[j/2] (where [x] is the greatest 

integer function, i.e. [x] = greatest integer less than or equal to x) and k-[j/2]-1. 

Since the elements of our triples are assumed to be independently generated Poisson random 

variables with common parameter 𝜆  we can obtain formulas in terms of Poisson probabilities for 

𝑃(𝐴𝑗,𝑘). We first consider the case j even. Writing 𝑝(𝑛, 𝜆)for the Poisson probability (𝑒−𝜆 𝜆𝑛

𝑛!
) of 

obtaining the value n from a Poisson random variable with parameter 𝜆, the probability that a 

triple consists of the values {k-j, k-[j/2],k} in any one of the six different orders in which these 

numbers can be permuted is 𝑝(𝑘 − 𝑗, 𝜆)𝑝(𝑘 − [𝑗 2⁄ ], 𝜆)𝑝(𝑘, 𝜆)and hence the the probability of 

obtaining the triple for j even  is 

𝑃(𝐴𝑗,𝑘) = 6𝑝(𝑘 − 𝑗, 𝜆)𝑝(𝑘 − [𝑗 2⁄ ], 𝜆)𝑝(𝑘, 𝜆) 
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Applying a similar analysis with the two distinct triple types that could result in the event 𝐴𝑗𝑘 

when j is odd we get for odd j 

𝑃(𝐴𝑗,𝑘) = 6𝑝(𝑘 − 𝑗, 𝜆)(𝑝(𝑘 − [𝑗 2⁄ ], 𝜆) + 𝑝(𝑘 − [𝑗 2⁄ ] − 1, 𝜆))𝑝(𝑘, 𝜆) 

We combine the preceding observations to obtain a formula for the probability 𝑃(𝐴)that a triplet 

of numbers chosen independently from the same Poisson distribution contains its (rounded) 

mean. We get 

𝑃(𝐴) = 6( ∑ ∑ 𝑝(𝑘 − 𝑗, 𝜆)(𝑝(𝑘 − [𝑗 2⁄ ], 𝜆) + 𝑝(𝑘 − [𝑗 2⁄ ] − 1, 𝜆))𝑝(𝑘, 𝜆)
∞

𝑘=𝑗

∞

𝑜𝑑𝑑𝑗=3

+ ∑ ∑ 𝑝(𝑘 − 𝑗, 𝜆)𝑝(𝑘 − [𝑗 2⁄ ], 𝜆)𝑝(𝑘, 𝜆))
∞

𝑘=𝑗

∞

𝑒𝑣𝑒𝑛𝑗=2

  

And writing odd(x) for the function that is 1 when x is odd and 0 when x is even we can rewrite 

this as the single double sum: 

𝑃(𝐴) = 6(∑ ∑ 𝑝(𝑘 − 𝑗, 𝜆)(𝑝(𝑘 − [𝑗 2⁄ ], 𝜆) + 𝑜𝑑𝑑(𝑗)𝑝(𝑘 − [𝑗 2⁄ ] − 1, 𝜆))𝑝(𝑘, 𝜆))

∞

𝑘=𝑗

∞

𝑗=2

 

Since we wish to obtain decimal values for these probabilities for various values of 𝜆 we note 

that if, for a given 𝜆 we choose N such that ∑ 𝑝(𝑗, 𝜆)
∞

𝑗=𝑁+1
< 10−9 or, equivalently, 

∑ 𝑝(𝑗, 𝜆)
𝑁

𝑗=0
≥ 1 − 10−9, then we can obtain a value of P(A) accurate to 5 decimal places using 

the formula: 
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𝑃(𝐴) = 6(∑ ∑ 𝑝(𝑘 − 𝑗, 𝜆)(𝑝(𝑘 − [𝑗 2⁄ ], 𝜆) + 𝑜𝑑𝑑(𝑗)𝑝(𝑘 − [𝑗 2⁄ ] − 1, 𝜆))𝑝(𝑘, 𝜆))

𝑁

𝑘=𝑗

𝑁

𝑗=2

 

Using this formula, we wrote an R program to calculate the probability that a triple of 

independent Poisson random variables with a common parameter λ includes its mean as one of 

its three elements. We ran this program to create a table of the values of this probability for each 

of the integer values of λ from 1 to 2000.  As a double check on the applicability of our 

calculation, we performed bootstrap calculations of selected probabilities using R to perform sets 

of 200,000 trials. The results were consistent with our calculations.  
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